
What is the clinical relevance of animal models for evaluating bone & cell responses vz implant design & roughness?

Asbjørn Jokstad University of Toronto What is the relevance of data from animal models to predict longitudinal trial results?

- A: Very high
- B: High
- C: Uncertain value
- D: Of little value
- E: Of no value

The relevance of data from animal models to predict longitudinal trial results?

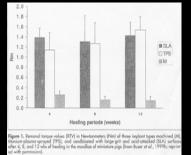

is high?

Figure 1. Removal torque values (RTV) in Newtonmeters (Nm) of three implant types machined (M), titanium-plasma-sprayed (TPS), and sandblasted with large-grit and acid-attacked (SLA) surfaces after 4, 8, and 12 wks of healing in the maxillae of miniature pigs (from Buser *et al.*, 1999b; reprinted with permission).

The relevance of data from animal models to predict longitudinal trial results?

- is high?
- is of little or no value?

- London et al. 2002; Novaes et al. 2002;
 Carlsson et al. 1988; Gotfredsen et al. 1992;
 Vercaigne et al. 1998, 2000.
- Offers some indications within a midrange of roughness?
 - Wennerberg & Albrektsson, 2000

Surface topography description?

Table 1Definition of Selected Standard ("Integral") 2-D RoughnessParameters with Respect to Amplitude, Spacing, or CombinedAmplitude and Spacing Characteristics

Roughness parameters	Definition	Type*	Description		
R _a (µm)	$R_{a} = \frac{1}{m} \sum_{I=1}^{m} z(x_{I})$	A	The arithmetic average of the absolute values of all points of the profile; also called CLA (center line average height)		
R _q (µm)	$R_q = \frac{1}{m} \sum_{i=1}^m z^2(x_i)$	A	The root mean square (RMS) of the values of all points of the profile		
R _t (µm)		А	The maximum peak-to-valley height of the entire measurement trace		
R _{zDIN} (μm)	$R_{zDIN} = \frac{1}{5} \sum_{i=1}^{5} z(x_i)$	A	The arithmetic average of the maximum peak to valley height of the roughness values z(x ₁) to z(x ₅) of 5 consecutive sampling sections over the filtered profile		
S _m (mm)	$S_m = \frac{1}{m} \sum_{i=1}^m S_i$	S	Arithmetic average spacing between the falling flanks of peaks on the mean line		
S _k	$S_{k} = \frac{1}{n} \sum_{I=1}^{n} \frac{y_{I}^{3}}{R_{q}^{3}}$	Н	Amplitude distribution skew S _k = 0: amplitude distribution is symmetric S _k < 0: profile with "plateaus" and single-deep valleys S _k > 0: profile with very intense peaks		
L _r	$L_r = \frac{L_0}{L_m}$	Н	The relationship of the stretched length of the profile L ₀ to the scanned length L _m		
*A = amplitude: S = spacing: H = hybrid parameter (combined amplitude and spacing).					

*A – amplitude; S – spacing; H – hybrid parameter (combined amplitude and spacing).

Wieland et al. Int J Oral Maxillofac Implants 2001;16:163–181)

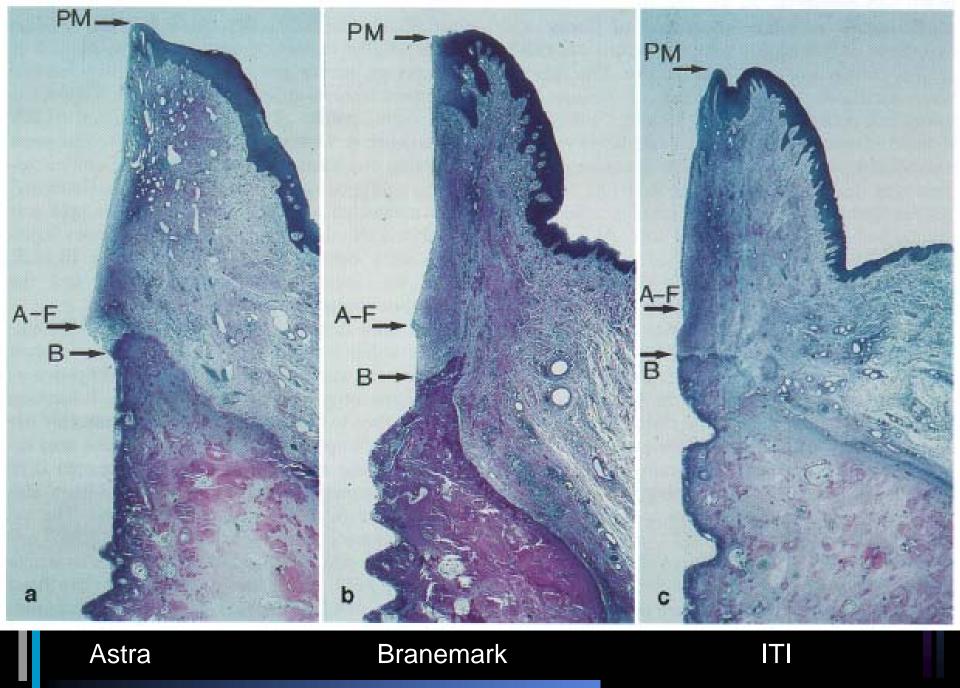
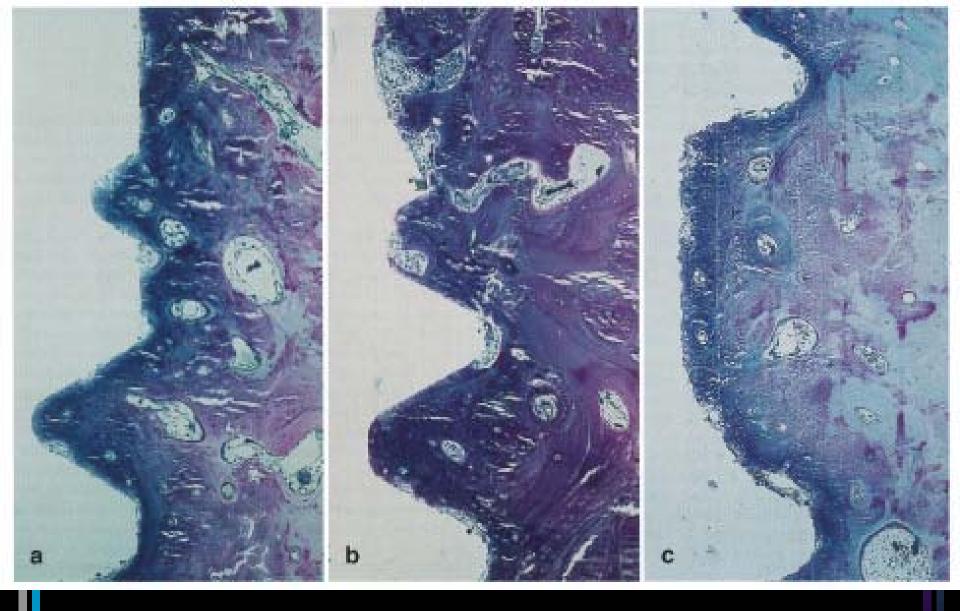

- Surface topography description?
- Model used?

Table 2 Biomechanical Studies of the Bone-Implant Interface


Model	Implant type	Observation time	Biomechanical result	Biomechanical test
Goat mandible and maxilla ¹⁵¹	Cylindric 4 \times 1 1-mm TPS	2 to 24 wk	50 to 1,000 N	Pull-out
Canine mandible ¹⁵⁰	Cylindric 3/3.3/4 × 4/8/15-mm HA	15 wk	130 to 282 MPa	Pull-out
Canine mandible ¹⁴⁹	Threaded/cylindric 4 × 10-mm HA	15 wk	4.61 to 6.85 MPa	Pull-out
Rat tibia ¹⁷⁷	Threaded 2 $ imes$ 2-mm cpTi	8 wk	10 to 32 MPa	Pull-out
Rabbit femur ¹⁷⁸	Cylindric 2 × 12-mm cpTi, HA-glass	3, 6, and 9 wk	4.5 to 27 MPa	Pull-out
Canine femur ¹⁷⁹	Cylindric 4.7 × 12-mm Ti alloy, HA-coated	12 and 24 wk	14 to 16 MPa	Pull-out
Canine mandible ¹⁵³	Threaded 4 $ imes$ 14-mm cpTi	0 and 3 mo	813 to 1,194 N	Push-out
Canine femur ¹⁵⁴	Cylindric 6 × 13-mm Ti alloy, HA	4 and 12 mo	0.1 to 11.7 MPa	Push-out
Canine femur ¹⁵⁵	Cylindric 4 × 15-mm carbon, HA, Ti alloy	8 wk	1.59 to 8.71 MPa	Push-out
Rabbit femur ¹⁵⁷	Cylindric 2.8 \times 6-mm HA, Al ₂ O ₃	3 mo	3 to 15 MPa	Push-out
Canine femur ¹⁵⁶	Cylindric 10 × 10-mm HA, glass- ceramic	12 wk	0.24 to 3.84 MPa	Push-out
Goat tibia ¹⁸⁰	Cylindric 4 × 10-mm Ti alloy, TPS	3 mo	2.9 to 12.9 MPa	Push-out
Canine humerus ¹⁸¹	Cylindric 6 × 10-mm Ti alloy, HA, TPS	6 wk	0.31 to 3.4 MPa	Push-out
Rabbit tibia and femur ¹⁶⁰	Threaded 3.75 × 6-mm cpTi, blasted	12 wk	9 to 65 Ncm	Torque
Rabbit tibia and femur ¹⁵⁹	Threaded 3.75 \times 4-mm cpTi	6 wk and 3 and 6 mo	20 to 37 Ncm	Torque
Rabbit tibia ¹⁶¹	Threaded, cylindric 3.5 × 10-mm cpTi machined, blasted, HA	3 and 12 wk	20 to 117 Ncm	Torque
Rabbit femur ¹⁰⁷	Threaded 3.25 × 4 mm cpTi, machined, acid-etched	2 mo	1.8 to 36.1 Ncm	Torque
Miniature pig maxilla ¹⁰⁹	Threaded 3.75 × 10-mm, 4 × 8-mm TPS, acid-etched	4, 8, and 12 wk	46 to 227 Ncm	Torque
Rabbit femur and tibia ⁹⁸	Threaded 3.75 × 6-mm cpTi, machined, blasted	12 wk	10 to 60 Ncm	Torque
Canine mandible182	Threaded, cylindric 3.5 × 10-mm cpTi, machined, blasted	12 wk	22 to 150 Ncm	Torque
Baboon mandible and maxilla183	Threaded 3.8 × 10 mm cpTi, Ti alloy, HA	3 to 4 mo	65 to 168 Ncm	Torque
Rabbit tibia40	Threaded 3.75 × 6-mm cpTi, Ti alloy	3 mo	18 to 86 Ncm	Torque

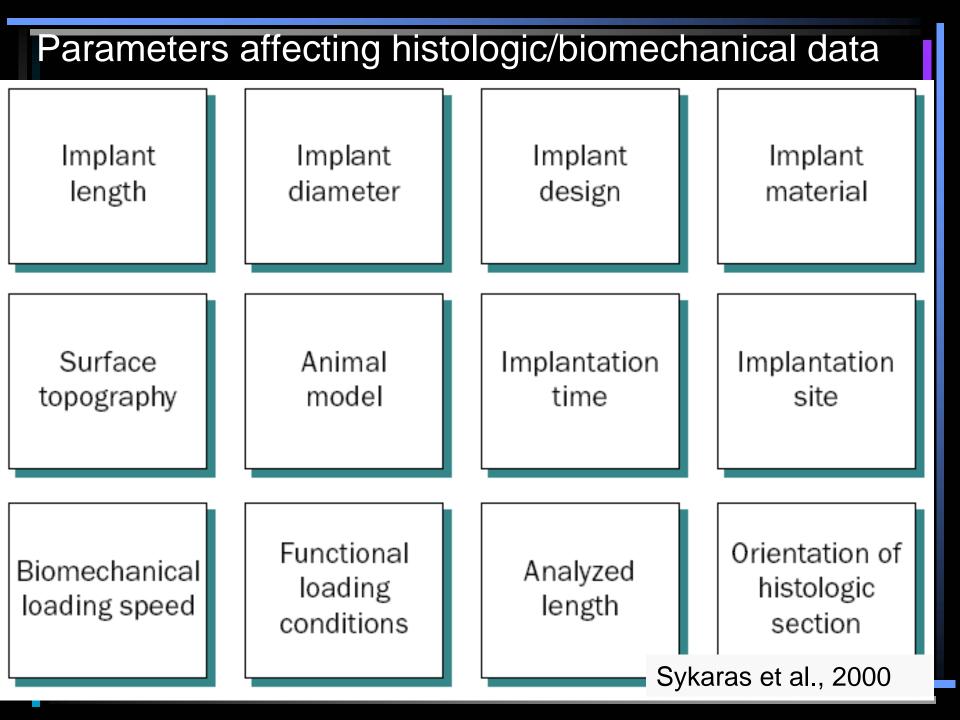
TPS - plasma-sprayed titanium; HA - hydroxyapatite; cpTi - commercially pure titanium; wk - weeks; mo - months.

Sykaras et al., 2000

Abrahamson et al. 1996

Astra

Branemark


ITI

Abrahamson et al. 1996

Table 3 Histomorphometric Studies of the Bone-Implant Interface

Model	Implant type	Observation time	Bone-implant contact (%)
Canine mandible ¹⁶⁷	Threaded Ti	5 to 24 mo	50 to 65
	Threaded ceramic		41
Rabbit tibia ¹⁶²	Threaded Ti	4 wk	20 to 36
Sheep tibia ¹⁸⁴	Threaded cpTi	6 mo	56 to 60
Canine mandible ¹⁸⁵	Threaded cpTi	4 mo	42 to 70
Baboon mandible and maxilla ¹⁸⁶	Threaded cpTi, alloy Threaded HA	3 mo	40 62
Baboon mandible ¹⁸⁷	Cylindric HA	6 mo	67
Rabbit knee and tibia ¹⁵⁹	Threaded cpTi	6 wk, 3 mo, and 6 mo	21 to 58
Canine mandible ¹⁶⁴	Cylindric TPS	3 mo	48
Canine mandible ¹⁶⁵	Threaded Ti	3 mo	46
	Cylindric TPS		55
	Cylindric HA		71
Rhesus monkey mandible ¹⁶⁹	Porous	74 mo	64 to 67
Human biopsies ¹⁸⁸	Threaded cpTi	1 to 16 y	43 to 100
Canine mandible and maxilla ¹⁸⁹	Threaded cpTi	5 mo	46 to 60
Ewe femur ¹⁶³	Threaded cpTi	12 wk	61 to 68
Human biopsies ¹⁶⁸	Threaded cpTi	8 to 20 mo	34 to 93
Human biopsies ¹⁶⁶	Threaded hollow cpTi	23 to 36 mo	18 to 74
	Cylindric hollow cpTi		
Canine mandible ¹⁹⁰	Threaded hollow cpTi	3, 6, and 15 mo	52 to 78
Rabbit tibia ⁴⁰	Threaded cpTi, alloy	3 mo	21 to 46
Human biopsies ¹⁹¹	Threaded cpTi	24 mo	61 to 69
Canine mandible ¹⁹²	Cylindric cpTi	12 wk	2 to 100
Human biopsies ¹⁹³	Threaded hollow cpTi	6 mo	17 to 72
Monkey mandible ¹⁹⁴	Threaded cpTi	18 mo	11 to 73

Ti – titanium; cpTi – commercially pure titanium; TPS – plasma-sprayed titanium; HA – hydroxyapatite; wk – weeks; mo – months; y – years.

- Surface topography description?
- Model used?
- Roughness characterization?

Profile 1 3 1 4 102V Fig 6 Four different profiles with the same average height deviation (R_a).

Real profile Measured profile Diagram of the influence of tip radius on the measured Fig 1 profile. A radius that is too large will result in a loss of information.

- Surface topography description?
- Model used?
- Roughness characterization?
- Measuring device?

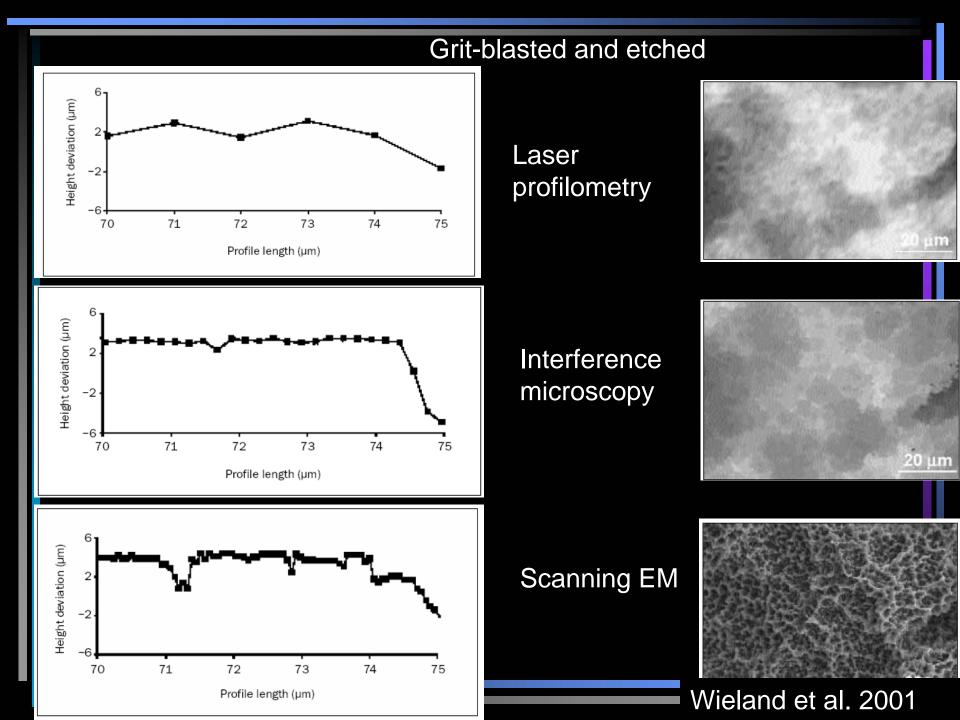
Table 2Advantages and Limitations of the Techniques Used in this Study to Characterize SurfaceTopographies

Method (environment)	Advantages	Limitations
Non-contact laser profilometry (air)	Non-contact, non-destructive Fast for 2-D profiles (minutes) Resolution: vertical about 50 nm, lateral about 1 μm Scanning over mm to cm possible	Artifacts (optical effects at sharp edges, reflections at locally shiny areas) Time-consuming for 3-D images (h)
Interference microscopy (air)	Non-contact, non-destructive Fast (3-D images, minutes) Resolution: vertical about 1 nm, lateral about 0.2 µm	Only small area measured at high lateral resolution For larger areas, adjacent images with high resolution have to be combined
Scanning electron microscopy (high vacuum)	High resolution: vertical 1 nm, lateral 10 nm High depth of focus Morphologic information Local chemical analysis (electron dispersive spectroscopy)	No quantitative topographic information
Stereo-scanning electron microscopy (high vacuum)	High depth of focus High dynamic x,y,z-range (mm to nm) Resolution: vertical 0.5 μm to 0.1 μm, lateral 20 nm to 50 nm Quantitative topographic information (2-D)	Not widely used Unsuitable for smooth surfaces Only small area at high lateral resolution For larger areas, adjacent micrographs with high resolution have to be combined
Atomic force microscopy (air, liquid, vacuum)	Highest resolution in both lateral and vertical directions (atomic to nm)	Limited z-range (problems with rough surfaces) Artifacts (envelope effect because of tip shape, surface deformation), particularly for high-aspect-ratio surfaces

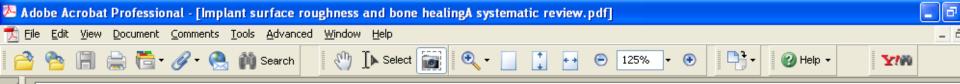
Wieland et al. Int J Oral Maxillofac Implants 2001;16:163–181)

Grit-blasted and etched

1111


Microfabricated and etched

Scanning EM


Interference microscopy

Non-contact laser profilometry

Wieland et al. 2001

- Surface topography description?
- Model used?
- Roughness characterization
- Measuring device
- Consistency of results?

Implant Surface Roughness and Bone Healing: a Systematic Review M M Shalabi; A Gortemaker; M A Van't Hof; J A Jansen; N H J Creugers Journal of Dental Research; Jun 2006; 85, 6; Career and Technical Education

CRITICAL REVIEWS IN ORAL BIOLOGY & MEDICINE

Implant Surface Roughness and Bone Healing: a Systematic Review

M.M. Shalabi¹, A. Gortemaker¹, M.A. Van't Hof², J.A. Jansen^{1*}, and N.H.J. Creugers³

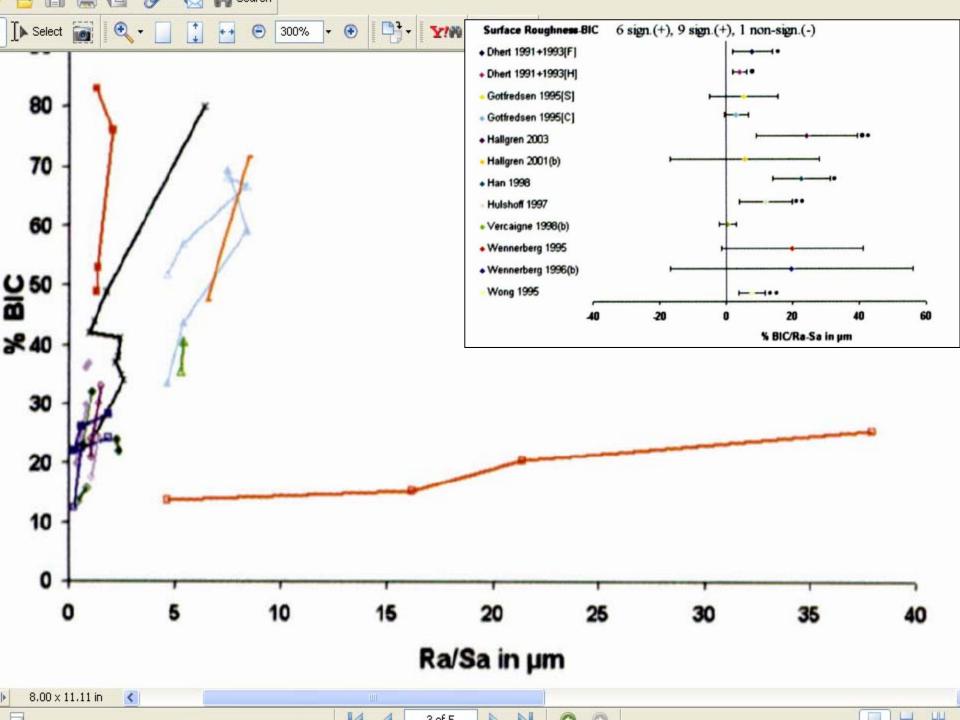
¹Department of Periodontology and Biomaterials, ²Biostatistics, and ³Department of Oral Function and Prosthetic Dentistry, Dentistry 309, College of Dental Science, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands; *corresponding author, j.jansen@dent.umcn.nl

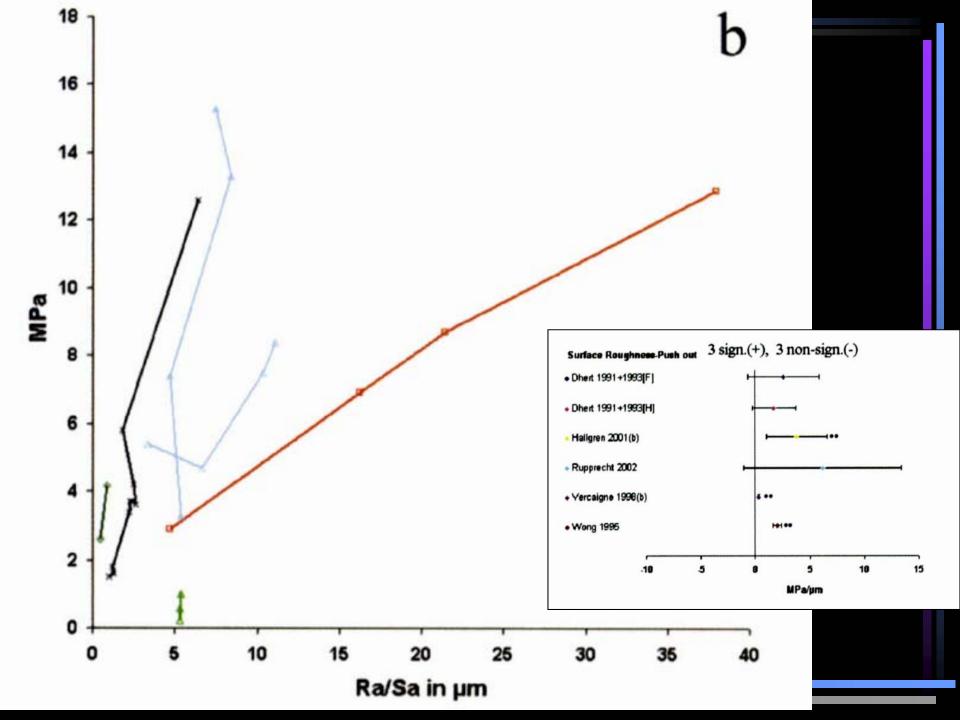
J Dent Res 85(6):496-500, 2006

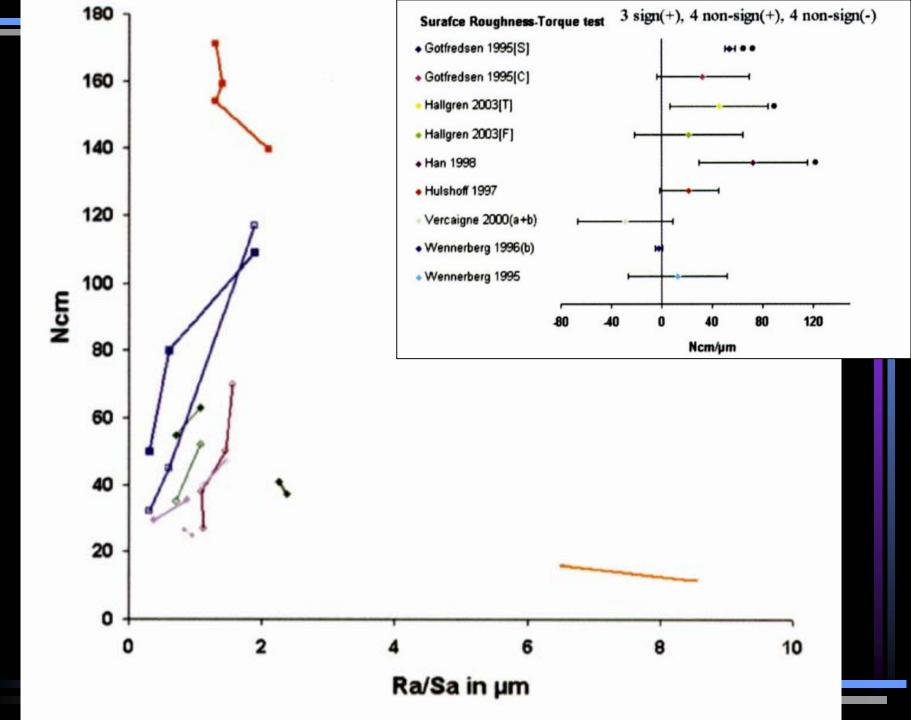
ABSTRACT

A systematic review was performed on studies investigating the effects of implant surface roughness on bone response and implant fixation. We searched the

INTRODUCTION


A major parameter for the clinical success of endosseous implant Atherapy is the formation of a direct contact between implant and surrounding bone. The implant-bone response is thought to be influenced by implant surface topography. As a consequence, over the last 20 years, a large number of implant systems with different surface topographies have been introduced. The literature on this topic is extensive and continuously increasing (Table 1). However, the claims made in numerous publications about the effect of implant surface roughness on bone response are not as straightforward as suggested. For example, there is a lack of agreement in findings from in vivo animal experiments, where the clinical performance of micro-roughened titanium implants is described on the basis of mechanical failure tests and histological considerations. Some of the studies indicated a tendency for an increase of bone-to-implant contact with increasing roughness of the implant surface (Buser et al., 1991), while other studies either


Signatures Bookmarks


7

Pages

pg. 496

Shalabi et al., J Dent Res 2006

<u>Conclusions</u>

- Almost all papers showed an enhanced bone-to-implant contact with increasing surface roughness.
- Six comparisons were significantly positive for the relationship of bone-to-implant contact and surface roughness.
- Also, a significant relation was found between push-out strength and surface roughness.
- Unfortunately, the eventually selected studies were too heterogeneous for inference of data

- Surface topography description?
- Model used?
- Roughness characterization?
- Measuring device?
- Consistency of results?
- Surgical technique for placement?